pytabkit
Overview of the
models
part
Scikit-learn interfaces
Hyperparameter optimization
NN implementation
Training directly with PyTorch Lightning
Overview and Installation of the Benchmarking code
Running the benchmark
Adding your own models to the benchmark
Data format
Code structure
Downloading the benchmark results
pytabkit
Welcome to PyTabKit’s documentation!
View page source
Welcome to PyTabKit’s documentation!
Tabular ML models in pytabkit.models
Overview of the
models
part
Scikit-learn interfaces
AlgInterface: more fine-grained control
Hyperparameter handling
Internal data representation
Data preprocessing (also available for other models)
NN implementation
Vectorization
Scikit-learn interfaces
fit()
RealMLP
__init__()
__init__()
Boosted Trees
__init__()
__init__()
__init__()
Other NN baselines
__init__()
__init__()
__init__()
__init__()
__init__()
__init__()
Other methods
Saving and loading
Hyperparameter optimization
Option 1: Using the HPO interface
Option 2: Performing your own HPO
NN implementation
Training directly with PyTorch Lightning
Using PyTorch Lightning
Tabular benchmarking using pytabkit.bench
Overview and Installation of the Benchmarking code
Installation
Using Sphinx Documentation
Running the benchmark
Configuration of data paths
Download datasets
Run experiments with slurm
Run experiments without slurm
Time measurements
Evaluating the benchmark results
show_eval()
Creating plots and tables
Single-task experiments
Other utilities
Adding your own models to the benchmark
Data format
Algs folder
Tasks folder
Task collections folder
Results folder
Result summaries folder
Other folders
Code structure
Algorithm wrappers
Datasets
Scheduling code
Resource estimation
Evaluation and plotting
Downloading the benchmark results
Indices and tables
Index
Module Index
Search Page